The Role of Individual and Dyadic Planning in Couples’ Daily Goal Pursuits

Ophir Katzenelenbogen1, Nina Knoll2, Gertraud Stadler3, and Eran Bar-Kalifa1*

Abstract
Planning promotes progress toward goal achievement in a wide range of domains. To date, planning has mostly been studied as an individual process. In couples, however, the partner is likely to play an important role in planning. This study tested the effects of individual and dyadic planning on goal progress and goal-related actions. Two samples of couples (N = 76 and N = 87) completed daily diaries over a period of 28 and 21 days. The results indicate that individual and dyadic planning fluctuate on a daily basis and support the idea that dyadic planning is predominantly used as a complementary strategy to individual planning. As expected, individual and dyadic planning were positively associated with higher levels of action control and goal progress. In Sample 2, dyadic planning was only associated with goal progress on days in which individuals felt that they were dependent upon their partners’ behaviors to achieve their goals.

Keywords
romantic relationships, planning, dyadic planning, well-being

Received January 13, 2021; revision accepted January 21, 2021

Planning
Goal attainment has been found to be consistently related to psychological well-being (e.g., Klug & Maier, 2015). Transactional goal dynamics (TGD) theory (Fitzsimons et al., 2015) argues that the process of goal pursuit is interdependent with people’s relationships with their partners (e.g., romantic partners, friends, coworkers). Little is known, however, about the ways in which this interdependence unfolds in people’s daily lives. To address this question, the current studies focused on a key regulatory strategy that promotes goal progress; namely, planning. We tested the extent to which incorporating one’s romantic partner in one’s planning process (i.e., dyadic planning [DP]) facilitates goal progress in people’s daily lives.

Various factors, such as bad habits or distractions, can delay or prevent the implementation of goal-promoting actions (Gollwitzer, 1999). One effective regulatory strategy in overcoming such obstacles is planning, which is also referred to as implementation intentions; that is, anticipating a course of action that may increase the likelihood to achieve a given goal (Gollwitzer, 1999). Planning involves the construction of an “if/when-then” link between situational cues (when and where to act) and behavioral responses (how to act); for example, “When I get home from work, I will cook myself a healthy dinner” (Gollwitzer, 1999). In a meta-analysis by Gollwitzer and Sheeran (2006), a medium-to-large positive effect size (d = .65) was found for the effect of implementation intentions on goal attainment. This effect was applicable to a variety of goal domains, including academic, health, and prosocial goals.

One key mechanism underlying the effect of planning on goal progress is action control (Carver & Scheier, 2002). This self-regulation strategy comprises three facets: (a) awareness of one’s own standards, (b) self-monitoring,
and (c) regulatory efforts. Sniehotta et al. (2005) argued that planning directly affects one’s awareness of behavioral standards. When one forms a plan, standards for future behaviors are set. Self-monitoring and regulatory efforts, in turn, facilitate the implementation of the planned behavior by minimizing discrepancies between plans and behaviors. Evidence for action control as a mechanism underlying the effects of planning comes from a study that tested healthy eating-related goals (e.g., increasing daily vegetable consumption; Godinho et al., 2014). By following individuals over 3 weeks, the authors found that planning and action control were sequential mediators of the link between intention and behavioral change.

Examining Planning Through a Dyadic Lens

The literature examining the effects of planning on behavioral regulation and behavioral change has mainly focused on intrapersonal processes but has left interpersonal influences relatively unaddressed. Recently, Fitzsimons et al. (2015) introduced Transactive Goal Dynamics (TGD) theory, which posits that behavioral regulation is often a relational process rather than an individual one. Accordingly, a relationship should be considered the regulating unit, in which the partners act as subunits that share resources and demands. As the density within this system increases; that is, the extent to which partners have numerous robust links among their goals, pursuits, and outcomes, partners’ goal pursuits become more interrelated. In other words, goal-related density reflects one type of the more general interdependence that exists between relationship partners (Berscheid et al., 1989).

In adulthood, romantic bonds are one type of close relationship that is often characterized by high interdependence (Rusbult & Buunk, 1993). Couples tend to report stronger interdependence within their romantic relationships compared with other relationships, such as with friends or siblings (Berscheid et al., 1989; Finkel et al., 2014). Moreover, partners’ goal progress is strongly shaped by this interdependence. For example, a weight loss intervention delivered to one partner was found to create a dyadic “ripple effect”; that is, leading to weight loss in the other, untreated partner as well (Gorin et al., 2008). Another study showed that romantic partners lost more weight when both partners attended (vs. alone) group support sessions (Golan et al., 2010). Relatedly, partners with high levels of dyadic goal conflict are more likely to stop pursuing their goals over time (Gere & Impett, 2018). A longitudinal study that followed romantic partners who broke up showed that participants whose ex-partner was instrumental to their goals experienced less goal progress after the relationship had ended (Gomillion et al., 2015).

One of the core tenets of TGD theory (Fitzsimons et al., 2015), however, is the idea that partners’ goal coordination determines whether partners’ interdependence will facilitate better goal outcomes. When partners manage to effectively use their pooled goal-related resources (e.g., time, skills, knowledge), they experience transactive gains; in other words, they achieve better goal outcomes as a dyad than they would independently. TGD theory posits that three primary mechanisms contribute to effective goal coordination: interpersonal multifinality, goal facilitation, and division of pursuit. For example, interpersonal multifinality occurs when a specific action by one partner promotes both partners’ goals; for example, Jonathan’s morning dog walks fulfill Jonathan’s goal to be more physically active, and Lisa’s goal that her dog gets its daily exercise. Although the idea that when partners’ pursuits are coordinated well, their interdependence will promote a goal-related outcome is compelling, the mechanisms proposed by TGD theory to facilitate such coordination have yet to receive sufficient empirical examination.

The current study focused on one such mechanism. Specifically, though not mentioned explicitly by TGD, the two studies presented in this article examined the role of DP; namely, the process partners engage in jointly to formulate a plan as to where, when, and how they will implement their goal-related behavior (Burkert et al., 2011). We suggest that this process represents one way partners can effectively use their pooled resources to promote goal success. For example, discussing plans with a partner may allow one partner to use the other’s knowledge, experience, and feedback to better consider possible opportunities and obstacles, which may lead to the formulation of more viable plans to pursue their goals. Although the potential benefits of planning together with another person are relevant to other relationships as well (e.g., colleagues), one’s partner is probably likely to be more committed and motivated to invest the time and effort (Meeus et al., 2007), as well as be in a better position to understand his or her partner’s affordances (e.g., what is possible in the context of one’s life circumstances).

Support for the putative beneficial effect of DP can be found, for example, in a study testing the effect of this interpersonal regulatory strategy in promoting health-related behaviors in prostatectomy patients (Keller et al., 2015). After tumor surgery, patients are advised to routinely engage in the pelvic floor exercise to control urinary incontinence. Premised on the idea that with time patients’ resources for self-regulation may be depleted (including those required for routine planning), the authors predicted, and found evidence, that having partners involved in the planning process facilitated the maintenance of this rehabilitative activity. However, the literature tends to report mixed effects of DP on goal progress (Knoll et al., 2017). In a randomized controlled trial (RCT) with the same medical population, DP was not more effective than individual planning (IP) in increasing pelvic floor exercise (Burkert et al., 2011). Similar results emerged in a recent smoking cessation RCT, in which DP was as effective as IP (Buitenhuis et al., 2019).
The findings are also inconsistent as regards the role of DP in the facilitation of action control. In a study by Burkert et al. (2011), action control mediated the longitudinal association between DP and rehabilitative exercise. In contrast, in another randomized controlled study (Knoll et al., 2017) that tested the effects of DP on community couples’ physical activity, action control increased in couples who had planned dyadically but failed to mediate the association between DP and behavior change (Keller et al., 2020).

Moderators of DP: Goal-Specific Interdependence and Relationship Satisfaction

Here, we argue that TGD theory can shed light on the inconsistent effects of DP on goal pursuit. As noted above, TGD theory posits that dyadic coordination becomes crucial under high transactive density; that is, when dyads have strong links with respect to their goals, pursuits, and outcomes. For example, if Jonathan is responsible for grocery shopping and Lisa wants to stick to her new diet, dyadic coordination becomes essential. This suggests that goal-related density must be considered when testing the effects of DP. Based on the assumption that DP is one strategy couples use to coordinate their pursuits, the effect of DP should interact with the density of the specific goal pursued. To examine this hypothesis, we focused on one aspect of density which we termed goal-specific interdependence. It reflects the extent to which individuals’ goal progress depends on their partners’ behaviors. We argue that when such goal-specific interdependence occurs, DP can help partners coordinate their shared resources and support each other, thus increasing their likelihood of achieving their goals.

In addition, TGD theory highlights the importance of relationship orientation in promoting the successful use of partners’ shared resources. It suggests that satisfied partners tend to adopt a systematic orientation emphasizing both partners’ (vs. the individual’s) goal success. In other words, satisfied partners are more motivated to accommodate their actions and invest time to benefit the dyad’s goals as a shared unit and, therefore, are more likely to use dyadic strategies when pursuing their goals. This system-oriented tendency can reduce conflict between partners’ individual goals, thus facilitating greater goal attainment.

Consistent with this idea, earlier findings showed that a person’s relationship satisfaction predicts and moderates the effect of DP. For example, in a longitudinal study of prostate cancer patients, these patients’ relationship satisfaction predicted greater use of DP for engaging in their pelvic floor exercises (Keller et al., 2017). Furthermore, in two RCTs, individuals’ relationship satisfaction moderated the effects of IP and DP on their own physical activity (Keller et al., 2020; Knoll et al., 2017). For those participants with low relationship satisfaction, IP was more effective than DP, whereas for those with high relationship satisfaction, DP was more helpful in sustaining physical activity (Keller et al., 2020). Although these studies dealt with more stable, dispositional (trait-like) components of people’s relationship satisfaction, there is evidence that state-level fluctuations in satisfaction are important to consider as well. For example, in one experience sampling study, the state-level relationship satisfaction of participants pursuing a goal was associated with effective goal-related self-regulation (e.g., perceived control) and actual goal progress (Hofmann et al., 2015).

Based on this reasoning, we predicted that both goal-specific interdependence (i.e., the extent to which one individual’s progress depends on his or her partner’s behavior) and the relationship satisfaction of the individual pursuing a goal would moderate the association between DP and goal outcomes. It should be noted that these two constructs are likely to be linked in that satisfied people may rely to a greater extent on their partners’ behaviors in their goal pursuits. However, even for satisfied individuals, it is likely that some of their goals are more (vs. less) dependent on their partners’ behaviors, thus making it worthwhile to examine both of these constructs as potential moderators.

The Current Study

TGD argues that partners’ goal pursuits are often linked via a web of interdependent processes; however, the nature of this dyadic web has yet to be sufficiently clarified. To better understand how romantic partners use their shared resources to pursue their goals, the current study focused on one such process; namely, planning. Specifically, the aim of the current study was to adopt insights gleaned from TGD to better understand the role of DP in facilitating romantic partners’ action control and goal progress. We expected that above and beyond the well-established effect of IP, DP would be positively associated with levels of action control and goal progress. We further predicted that DP would be particularly effective when the goal was characterized by high levels of goal-specific interdependence (Fitzsimons et al., 2015). In addition, we expected that the association between DP and action control or goal progress would be stronger when one’s relationship satisfaction was high.

One gap in the literature on DP is that, to date, most studies have examined DP at a low temporal resolution (e.g., once every few months; see Burkert et al., 2011; Knoll et al., 2017). However, it is quite possible that similar to other dyadic processes (e.g., support, conflict), DP and its effect on goal progress also exhibit daily fluctuations. We posited that dyads create and adapt their planning on a daily basis. For example, if Lisa, who regularly goes to the gym after work, finds out that she has to stay longer at the office the next day, she may want to plan, together with her partner, when she will make up for this lost training time.

One way to study dynamic changes in these processes is by utilizing the daily diary method (Bolger et al., 2003), which has the benefit of providing an ecologically valid examination
of people’s behaviors by repeatedly monitoring them in their natural environment. It can also tease apart the within- and between-person effects of DP on goal progress. To the best of our knowledge, no study has examined DP and its effects at the level of daily resolution. By collecting daily diary data from romantic couples, these goal-related processes were examined for the first time (e.g., DP, action control, goal progress) as they unfold on a daily basis. This enabled us to capture the temporal dynamics of these processes, which made it possible to simultaneously examine broad patterns (e.g., testing whether people who habitually tend to incorporate their partners in the planning process show more progress toward achieving their goals) and patterns with a higher temporal resolution (e.g., testing whether on days in which people choose to use DP they make more progress). Therefore, the current study tested the effect of planning both at the between-subject average level and within-subject daily level. Note that even though the main focus of this study was on examining the role of dyadic-related regulatory processes (i.e., DP), given the dearth of research on IP in people’s daily lives (for notable exceptions, see Berli et al., 2018; Wiebe et al., 2018) we also examined the daily effect of IP on people goal-related processes.

To test our predictions, we utilized daily diary data from two samples: Study 1 was conducted to provide a first examination of the role of daily IP and DP in promoting partners’ goal-related processes, whereas Study 2, a preregistered study (https://osf.io/am6tf), was used to replicate the findings obtained in Study 1.

Study 1

This study examined the process of planning as it unfolds in the daily lives of romantic couples. Specifically, we first aimed to understand:

Research Question 1 (RQ1): Whether IP and DP occur on a daily basis?

Research Question 2 (RQ2): Whether these strategies are used independently or in a complementary manner?

In addition, we tested the following hypotheses:

Hypothesis 1 (H1): Daily IP is associated with action control and goal progress.

Hypothesis 2 (H2): Daily DP is associated with action control and goal progress.

Hypothesis 3 (H3): Goal-specific interdependence moderates the within-person association between DP and action control and between DP and goal progress.

Hypothesis 4 (H4): Relationship satisfaction moderates the within-person association between DP and action control and between DP and goal progress.

Even though the main focus of the current study was on testing the effects of planning at the daily level (i.e., variability in participants’ use of planning from day to day), we explored planning effects at the between-person level as well (variability in participants’ average levels of using planning throughout the diary). Based on previous studies focusing on individual differences in planning (e.g., Burkert et al., 2011), we expected the following:

Hypothesis 4 (H5): IP at the person level would be associated with greater levels of action control and goal progress across the diary period.

Given the mixed effects found at the person-level for DP (e.g., Knoll et al., 2017), no directional hypotheses were made with regard to associations with action control and goal progress.

Method

Participants

As part of a research seminar in psychology, BA students from a large university in Israel recruited community cohabiting couples who were at least 18 years old and had routine access to the internet. Eighty-nine couples were initially recruited and completed an initial background questionnaire. Thirteen couples dropped out during the study; data from the remaining 76 couples were analyzed in the current study. The mean age of the participants was 31.4 years for men (range: 24–68, SD = 10.5) and 29.5 years for women (range: 22–62, SD = 8.4). All participants had at least a high school education and 63% had completed a degree in higher education. Most participants were born in Israel (N = 135, 88.8%), self-identified as Jewish (N = 142, 93.4%), and secular (N = 131, 86.2%). The average duration of the relationship was 7.17 years (range: 7 months to 43 years, SD = 9.1 years) and the average duration of cohabitation was 5.2 years (range: 2 months to 41 years, SD = 9.4 years). Twenty-seven couples (35.5%) were married and 12 couples (15.7%) had at least one child.

Procedure

Participating couples were recruited from the community. At the start of the study, a research assistant explained the study goal (examining daily processes in intimate relationships). After providing informed consent, participants were asked to complete a background questionnaire individually. Then, at 8:00 p.m. on each day for a period of 4 weeks, they were sent a link to the diary to their personal email and were requested to complete the diary within an hour before going to bed. On average, participants completed 24.3 of the 28 possible daily diaries (SD = 4.01, 86.8% compliance). Daily diary data were collected between April and June 2018. Participants were not compensated for their participation. However, upon completing the study, couples participated in a raffle, where two couples won and received a prize of approximately US$140.
Measures. The study was administered in Hebrew, and all instruments were translated and back-translated to ensure consistency with the English versions. Please see the methodology file in the Online Supplemental Material for an English version of all measures.

Goal. Before the diary period, each partner was asked to describe one goal that she/he was interested in pursuing during the next month. Examples of personal goals were to lose weight, improve academic performance, and exercise regularly. During the diary period, each participant’s pre-selected goal was presented each day and the following variables were assessed.

Individual and dyadic planning. Participants’ daily IP was measured on a 5-point Likert-type scale item adapted from Keller et al. (2017): “To what extent did you monitor your partner regarding when, where, and how you would pursue your goal?” Participants’ daily DP was measured on a 5-point Likert-type scale item adapted from Keller et al. (2017): “To what extent did you make a detailed plan today regarding when, where, and how you would pursue your goal?”

Action control. Participants’ daily action control was measured on a three-item 5-point Likert-type scale adapted from Sniehotta et al. (2005): (a) “To what extent did you monitor today whether your behavior advanced your goal achievement?” (b) “To what extent were you aware of your goal during the day?” and (c) “How much effort did you make today to behave in ways that advanced your goal achievement?”

Goal-specific interdependence. Participants’ daily goal-specific interdependence was measured on the following 5-point Likert-type scale item: “To what extent do you feel that your goal progress today was dependent upon things that your partner did (or avoided doing)?”

Goal progress. Participants’ daily goal progress was measured on a 5-point Likert-type scale item adapted from Gosnell and Gable (2017) ranging from [1] “I took a significant step backwards in working towards my goal today” to [5] “I made significant progress toward achieving my goal today.”

Relationship satisfaction. Participants’ daily relationship satisfaction was measured by calculating the mean for two 5-point Likert-type scale items: “To what extent do you feel (a) loved and (b) satisfied with your relationship with your partner right now?” In the current study, the within-person reliability for women and men was high (both $R_c = .87$; see Shrout et al., 2012 for details regarding R_c estimation).

Data Analytic Approach

Due to the data’s multilevel structure (days nested within couples), we used dyadic multilevel regression models with two levels. These models take into account the nonindependence of repeated measures within-person and between partners in a couple, and accommodate nonbalanced data (see Bolger & Laurenceau, 2013). We modeled both the between-person effect of the planning variables (i.e., the extent to which a person is characterized by high levels of individual/DP throughout the diary) and the within-person planning variables (i.e., the extent to which a particular day is characterized by greater individual/DP than the person’s average). All the within-person effects were considered to be random; that is, were allowed to vary from person to person. All Level 1 predictors were person mean-centered, such that their effects could be interpreted as changes in outcome associated with the deviation from the person’s average reports over time. Level 2 predictors were centered on the sample’s mean, such that their effects could be interpreted as a change in outcome associated with the deviation from the sample’s average reports. Note that in our models, we controlled for the previous day’s outcome, which allowed us to reduce concerns regarding the possibility of reverse causation; that is, a change in goal progress preceded or caused DP and IP. Importantly, to account for partners’ nonindependence, residuals within couples were allowed to correlate. Finally, a first-order autoregressive structure was imposed on the covariance matrix for the within-person residuals.

The generic day-level (Level 1) equation was:

$$\text{Outcome}_i = \beta_{0i} + \beta_{1i} \times \text{IP}_i + \beta_{2i} \times \text{DP}_i + \beta_{3i} \times \text{Outcome}_{i-1} + e_i,$$

where Outcome$_i$ is the predicted outcome (e.g., goal progress) for subject i on day t, which is predicted by this subject’s intercept (β_{0i}), within-person variation in IP (β_{1i}) and DP (β_{2i}), as well as by this subject’s outcome on the previous day (β_{3i}).

The generic person-level (Level 2) equations were:

$$\beta_{0i} = \gamma_{00} + \gamma_{01} \times \text{Person’s mean IP}_i + \gamma_{02} \times \text{Person’s mean DP}_i + \mu_{0i},$$

$$\beta_{1i} = \gamma_{10} + \mu_{1i},$$

$$\beta_{2i} = \gamma_{20} + \mu_{2i},$$

$$\beta_{3i} = \gamma_{30} + \mu_{3i},$$

In these equations, the intercept and the daily effects of IP and DP were modeled using both fixed (γ_{00}, γ_{10}, γ_{20}) and random parameters (μ_{0i}, μ_{1i}, μ_{2i}). In addition, the between-person effects of the two planning variables were included (γ_{01}, γ_{30}) as predictors in the equation of the intercept.

To test the hypotheses pertaining to the moderation effects (i.e., Hypotheses 3 and 4), we estimated an additional set of
Table 1. Means and Standard Deviations (on the Diagonal) as Well as Zero-Order Correlations Within- (Above Diagonal) and Between-Persons (Below Diagonal) for Daily Variables for Study 1.

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Individual planning</td>
<td>1.91</td>
<td>0.542</td>
<td>0.621</td>
<td>0.283</td>
<td>0.483</td>
<td>0.070</td>
</tr>
<tr>
<td>2. Dyadic planning</td>
<td>0.761</td>
<td>1.50</td>
<td>0.87</td>
<td>0.408</td>
<td>0.401</td>
<td>0.287</td>
</tr>
<tr>
<td>3. Action control</td>
<td>0.761</td>
<td>0.569</td>
<td>2.32</td>
<td>1.07</td>
<td>0.301</td>
<td>0.576</td>
</tr>
<tr>
<td>4. Goal interdependence</td>
<td>0.463</td>
<td>0.650</td>
<td>0.436</td>
<td>1.67</td>
<td>0.37</td>
<td>0.028</td>
</tr>
<tr>
<td>5. Goal progress</td>
<td>0.478</td>
<td>0.332</td>
<td>0.459</td>
<td>−0.043</td>
<td>3.37</td>
<td>0.035</td>
</tr>
<tr>
<td>6. Relationship satisfaction</td>
<td>−0.084</td>
<td>0.040</td>
<td>−0.148</td>
<td>0.000</td>
<td>0.090</td>
<td>4.40</td>
</tr>
</tbody>
</table>

Note. The correlations between the person-centered (within-person) variables appear above the diagonal, whereas the correlations between the person mean (between-person) variables appear below the diagonal.

Results

Descriptive Results

Table 1 presents the descriptive statistics for the variables in Study 1. Participants reported engaging in some sort of daily IP on 51.6% of the reported days, and DP on 30.1% of the reported days. Notably, on most days (93.6%) in which participants engaged in DP, they were also reported engaging in IP.

To examine the extent to which IP and DP showed day-to-day variation, we used unconditional multilevel models. In these models, we incorporated in the Level 1 equation above, both the moderating variable’s main effect (β_{ip} * Moderator_{ip}) and the two interaction effects with the planning variables (β_{si} * Moderator_{si} * IP; β_{si} * Moderator_{si} * DP). At Level 2, the main effect of the moderator was modeled using both fixed- and random-effect terms (β_{si} = γ_{si0} + μ_{si}); the interaction effects were modeled only using fixed-effect terms (β_{si} = γ_{si0} + μ_{si}). Separate models were run for each moderating variable (i.e., daily goal interdependence and relationship satisfaction). Note we ran an additional set of multilevel to test whether the examined variables showed systematic time effects. In both studies on weekends, participants reported lower levels of IP, action control, and goal progress. In Study 1, participants’ action control showed a linear decline over the course of the diary period. Therefore, we controlled for the linear effect of time and the effect of weekends in all analyses. Statistical power estimates of nested data are a challenging issue (see Bolger and Laurenceau, 2013). A priori power estimates require the specification of a myriad of hypothesized values for parameters. Unfortunately, in our case, no previous pilot data existed to inform such assumptions.

Associations of IP and DP with action control and goal progress. Table 2 presents the results of the multilevel models in which action control and goal progress were the outcomes. Consistent with Hypotheses 1 and 2, both day-level IP and DP were associated with higher daily levels of action control and goal progress. Day-level IP was a stronger predictor of both action control (Estimation = 0.40, SE = 0.04, p < .001) and goal progress (Estimation = 0.34, SE = 0.04, p < .001) than DP. In addition, person-level IP was positively associated with both action control and goal progress (supporting Hypothesis 5). No such associations were found with person-level DP.

As noted above, partners mostly used DP together with IP. To test whether this particular combination was associated with greater action control and goal progress than IP alone, days were classified based on the planning items’ response anchors (which read 1 — “not at all,” 2 — “slightly,” 3 — “somewhat,” 4 — “to a large extent,” and 5 — “to a very large extent”). Specifically, we constructed the following four categories: (a) days with no planning (IP and DP = 1; 46.7% of the days), (b) IP (IP > 1; DP ≤ 1; 23.2%), (c) DP (IP = 1; DP > 1; 1.7%), and IP + DP (IP and DP > 1; 28.4%). We then ran an additional set of multilevel models in which IP served as the reference category, and the other three categories were entered as predictors. These analyses indicated that the combination of IP and DP was more strongly associated with action control (Estimation = 0.34, SE = 0.06, p < .001) and goal progress (Estimation = 0.14, SE = 0.05, p = .006) than IP alone.

Goal-specific interdependence and relationship satisfaction as moderators. We used an additional set of multilevel models to explore the moderation of the within-person planning effects by daily goal interdependence and relationship satisfaction.

Goal-specific interdependence. In contrast to Hypothesis 3, daily goal interdependence did not moderate the with-person association between DP and action control (Estimation = 0.03, SE = 0.02, p = .128) or goal progress (Estimation = 0.04, SE = 0.02, p = .114). Although not part of our set of hypotheses, we also tested whether daily goal interdependence moderated the within-person associations between IP and action control and between IP and goal progress. The results showed that goal interdependence marginally moderated
the association between IP and action control (Estimation = −0.04, SE = 0.02, p = .051). We probed this interaction and found that this association was weaker when participants reported high levels of daily goal interdependence (e.g., Estimation = 0.51, SE = 0.03, p < .001 for days characterized by −1 SD goal interdependence, as compared with Estimation = 0.46, SE = 0.03, p < .001 for days characterized by +1 SD goal interdependence; see Figure 1). Day-level goal interdependence did not moderate the within-person association between IP and goal progress (Estimation = −0.02, SE = 0.02, p = .450).

Relationship satisfaction. We ran a final set of multilevel models to test the moderation of the within-person planning effects by daily relationship satisfaction. In contrast to Hypothesis 4, daily relationship satisfaction did not moderate

Table 2. Study 1, Multilevel Model Fixed Effects for Individual Planning and Dyadic Planning Predicting Action Control (Left) and Goal Progress (Right).

<table>
<thead>
<tr>
<th>Effect</th>
<th>Action control</th>
<th>Goal progress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimation (SE)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Intercept</td>
<td>2.52 (0.05)</td>
<td>[2.419, 2.619]</td>
</tr>
<tr>
<td>Day-level individual planning</td>
<td>0.52 (0.03)</td>
<td>[0.379, 0.646]</td>
</tr>
<tr>
<td>Day-level dyadic planning</td>
<td>0.12 (0.03)</td>
<td>[0.042, 0.120]</td>
</tr>
<tr>
<td>Person-level individual planning</td>
<td>0.78 (0.05)</td>
<td>[0.469, 0.607]</td>
</tr>
<tr>
<td>Person-level dyadic planning</td>
<td>−0.04 (0.07)</td>
<td>[−0.092, 0.055]</td>
</tr>
<tr>
<td>Lagged outcome</td>
<td>−0.08 (0.02)</td>
<td>[−0.089, −0.038]</td>
</tr>
<tr>
<td>Weekend</td>
<td>−0.15 (0.03)</td>
<td>[−0.094, −0.039]</td>
</tr>
<tr>
<td>Time</td>
<td>−0.01 (0.00)</td>
<td>[−0.090, −0.022]</td>
</tr>
</tbody>
</table>

Note. Currently, there is no established method for computing standardized effects in multilevel modeling. Therefore, two approximation methods were implemented: (a) Standardizing the raw variables of the entire data set and re-estimating the models to obtain semi-standardized betas (see Baldwin et al., 2014) and (b) Transforming the t and df statistics using the following formula \(t^2/(t^2 + df) \) to obtain a semi-partial \(R^2 \) (Edwards et al., 2008; Rosenthal & Rosnow, 2008). CI = confidence interval.

\(^*β/\text{R}^2 \).

Figure 1. Daily Individual Planning × Goal Interdependence interaction on action control.
the within-person associations between DP and action control (Estimation = −0.02, SE = 0.05, p = .749) or goal progress (Estimation = −0.02, SE = 0.05, p = .642). Although not part of our set of hypotheses, we also tested whether daily relationship satisfaction moderated the within-person effects of IP and found that it did not moderate the within-person association between IP and action control (Estimation = 0.04, SE = 0.04, p = .289) or goal progress (Estimation = 0.04, SE = 0.04, p = .288).

To summarize, we found that both IP and DP were used quite often by partners (in about half and one third of the reported days). Furthermore, our results support the idea that DP serves as a complementary strategy to IP (RQ2).

Study 2
The main aim of this study was to replicate the positive associations found in Study 1 between daily IP and DP and both action control and goal progress (preregistered Hypotheses 1 and 2). In addition to these two preregistered hypotheses, we again wanted to examine the role of goal interdependence and relationship satisfaction as possible moderators (Hypotheses 3 and 4), even though no support for these two hypotheses was found in Study 1. Finally, at the person level, in line with the findings of Study 1, we expected to find a positive association between IP and action control as well as between IP and goal progress (Hypothesis 5).

Method
Participants
As part of a research seminar in psychology, BA students from a large university in Israel recruited community cohabiting couples who were at least 18 years old and had routine access to the internet. Ninety-seven couples were recruited and completed an initial background questionnaire; of these, 10 couples dropped out during the study, resulting in a sample of 87 couples with valid data for the current study. The mean age of the participants was 30.0 years for men (range: 22–65, SD = 8.9 years) and 29.7 years for women (range: 22–64, SD = 9.5 years). All participants had at least a high school education, and 67% reported some higher education. Most participants were born in Israel (n = 162, 93.1%), self-identified as Jewish (n = 170, 97.7%) and secular (n = 133, 76.4.2%). The average duration of the relationship was 7.2 years (range: 10 months to 39 years, SD = 8.3 years) and the average duration of cohabitation was 5.0 years (range: 0 months to 39 years, SD = 8.5 years). Sixty couples (33.1%) were married and 30 couples (17%) had at least one child. Three couples self-identified as lesbians and the rest as heterosexual.

Procedure
The procedure of Study 2 was similar to that of Study 1. Specifically, community cohabiting couples were recruited, completed a background questionnaire, and then were asked to complete an online diary, each night within an hour before going to bed. The major difference between the studies was that in Study 2, the diary duration was 3 weeks (vs. 4 in Study 1). On average, participants completed 18.4 of the 21 possible diaries (SD = 3.4; 86.8% compliance). Daily diary data were collected between April and June 2019. Participants were not compensated for their participation. However, upon completion of the study, the couples participated in a raffle, where two couples won and received a prize of approximately US$140.

Measures
The measures used in Study 2 were identical to those used in Study 1. In the current study, the within-person reliabilities for action control were .89 and .86 for women and men, respectively; the within-person reliabilities for relationship satisfaction were .87 and .75 for women and men, respectively.

Results
Descriptive Data Analyses
Table 3 presents the descriptive statistics for the variables in Study 2. Participants reported engaging in some sort of daily IP on 58.2% of the reported days, and DP on 33.7% of the reported days. In 93.6% of the days in which participants engaged in DP, they were also reported engaging in IP.

To examine the extent to which dyadic and IP showed day-to-day variations, we used unconditional multilevel models. These models revealed that 40.0% and 41.6% of the variance in IP and DP, respectively, were at the between-person level. The zero-order correlations between IP and DP were r = .49 at the within-person level and r = .72 at the between-person level. Thus, in line with the findings for Study 1, both IP and DP fluctuated on a daily basis (RQ1) and participants used DP mostly as a complementary strategy to IP (RQ2).

Association of DP and IP with action control and goal progress
Table 4 presents the results of the preregistered multilevel
models in which action control and goal progress were the outcomes. Consistent with Hypotheses 1 and 2 and replicating the findings of Study 1, both day-level IP and DP were associated with higher daily levels of action control and goal progress. Day-level IP was again a stronger predictor of both action control ($Estimation = 0.37, SE = 0.04, p < .001$) and goal progress ($Estimation = 0.37, SE = 0.04, p < .001$) than DP. In addition, replicating the findings of Study 1, person-level IP was positively associated with both action control and goal progress (supporting Hypothesis 5). Again, no such associations were found with person-level DP.

Since the partners mostly used DP together with IP, we tested whether this particular combination was associated with greater action control or goal progress than IP. As in Study 1, we used the planning variables to classify days into four categories: Days with no planning (39.7% of days), IP (26.7%), DP (2.1%), and IP + DP (31.5%). Then, we used an additional set of multilevel models in which IP served as the reference category and the other three categories were used as predictors. These analyses indicated that the combination of IP and DP was more strongly associated with action control ($Estimation = 0.35, SE = 0.06, p < .001$) and goal progress ($Estimation = 0.23, SE = 0.06, p < .001$) than IP alone.

Goal-specific interdependence and relationship satisfaction as moderators.

In addition to the preregistered models, another set of multilevel models was used to test the moderation of the within-person planning effects by daily goal interdependence and relationship satisfaction.

Goal-specific interdependence.

In contrast to Hypothesis 3, goal interdependence did not moderate the within-person association between DP and action control ($Estimation = 0.01, SE = 0.02, p = .691$). However, daily goal interdependence moderated the within-person association between DP and goal progress ($Estimation = 0.05, SE = 0.03, p = .035$). Simple slope analysis revealed that the association of DP with goal progress was stronger when participants

Table 3. Means and Standard Deviations (on the Diagonal) as Well as Zero-Order Correlations Within (Above Diagonal) and Between Persons (Below Diagonal) for Daily Variables for Study 2.

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Individual planning</td>
<td>2.14 (1.18)</td>
<td>0.489</td>
<td>0.648</td>
<td>0.293</td>
<td>0.506</td>
<td>0.036</td>
</tr>
<tr>
<td>2. Dyadic planning</td>
<td>0.721</td>
<td>1.58 (0.97)</td>
<td>0.400</td>
<td>0.460</td>
<td>0.293</td>
<td>0.094</td>
</tr>
<tr>
<td>3. Action control</td>
<td>0.660</td>
<td>0.433</td>
<td>2.58 (1.11)</td>
<td>0.322</td>
<td>0.612</td>
<td>0.038</td>
</tr>
<tr>
<td>4. Goal interdependence</td>
<td>0.392</td>
<td>0.647</td>
<td>0.413</td>
<td>1.74 (1.04)</td>
<td>0.191</td>
<td>0.020</td>
</tr>
<tr>
<td>5. Goal progress</td>
<td>0.398</td>
<td>0.252</td>
<td>0.486</td>
<td>0.194</td>
<td>3.40 (0.99)</td>
<td>0.050</td>
</tr>
<tr>
<td>6. Relationship satisfaction</td>
<td>0.050</td>
<td>0.061</td>
<td>0.084</td>
<td>-0.043</td>
<td>0.153</td>
<td>4.28 (0.76)</td>
</tr>
</tbody>
</table>

Note. The correlations between the person-centered (within-person) variables appear above the diagonal, and the correlations between-person mean (between-person) variables appear below the diagonal.

Table 4. Study 2 Multilevel Model Fixed Effects for Individual Planning and Dyadic Planning Predicting Action Control (Left) and Goal Progress (Right).

<table>
<thead>
<tr>
<th>Effect</th>
<th>Action control</th>
<th>Goal progress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimation (SE)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Intercept</td>
<td>2.73 (0.05)</td>
<td>[2.623, 2.840]</td>
</tr>
<tr>
<td>Day-level individual planning</td>
<td>0.52 (0.03)</td>
<td>[0.421, 0.512]</td>
</tr>
<tr>
<td>Day-level dyadic planning</td>
<td>0.10 (0.03)</td>
<td>[0.029, 0.115]</td>
</tr>
<tr>
<td>Person-level individual</td>
<td>0.68 (0.06)</td>
<td>[0.438, 0.617]</td>
</tr>
<tr>
<td>Person-level dyadic planning</td>
<td>-0.12 (0.07)</td>
<td>[-0.166, 0.020]</td>
</tr>
<tr>
<td>Lagged outcome</td>
<td>-0.11 (0.02)</td>
<td>[-0.130, -0.058]</td>
</tr>
<tr>
<td>Weekend</td>
<td>-0.14 (0.03)</td>
<td>[-0.092, -0.032]</td>
</tr>
<tr>
<td>Time</td>
<td>-0.02 (0.00)</td>
<td>[-0.115, -0.021]</td>
</tr>
</tbody>
</table>

Note. CI = confidence interval.
reported high levels of daily goal interdependence (e.g., $Estimation = 0.08, SE = 0.03, p = .007$, for days characterized by $+1 SD$ goal interdependence, as compared with $Estimation = 0.00, SE = 0.04, p = .965$ for days characterized by $-1 SD$ goal interdependence; see Figure 2). Although not part of our set of hypotheses, we also tested whether daily goal interdependence moderated the within-person effects of IP and found that similar to Study 1, it did moderate the within-person association between IP and action control ($Estimation = -0.06, SE = 0.02, p = .007$). Simple slope analysis revealed that the association between IP and action control was weaker when participants reported high levels of daily goal interdependence (e.g., $Estimation = 0.54, SE = 0.03, p < .001$ for days characterized by $-1 SD$ goal interdependence, as compared with $Estimation = 0.46, SE = 0.03, p < .001$ for days characterized by $+1 SD$ goal interdependence). Daily goal interdependence did not moderate the within-person association between IP and goal progress ($Estimation = -0.02, SE = 0.02, p = .450$).

Relationship satisfaction. In contrast to Hypothesis 4, daily relationship satisfaction did not moderate the within-person association between DP and action control ($Estimation = -0.00, SE = 0.05, p = .947$) or goal progress ($Estimation = 0.00, SE = 0.05, p = .986$). Although not part of our set of hypotheses, we also tested whether daily relationship satisfaction moderated the within-person associations with IP and found that it did not moderate the association with action control ($Estimation = 0.06, SE = 0.04, p = .111$) or with goal progress ($Estimation = 0.05, SE = 0.04, p = .248$).

To summarize, consistent with the findings of Study 1, DP was used by partners quite often and served as a complementary strategy to IP. Furthermore, we replicated the findings related to Hypotheses 1 and 2; namely, that daily (within-person) IP and DP were positively associated with both action control and goal progress. On the person level, as in Study 1, IP (but not DP) was associated with action control and goal progress. In contrast to Hypothesis 4, daily relationship satisfaction failed to moderate the within-person association between DP and action control or goal progress. Daily goal interdependence did not moderate the within-person association between DP and action control, but it did moderate the within-person association between DP and goal progress (partly in line with Hypothesis 3). Finally, as in Study 1, daily goal interdependence moderated the within-person association between IP and action control.

General Discussion

Goal achievement robustly contributes to well-being (Klug & Maier, 2015), but individuals often struggle to implement their goals, resulting in an intention–behavior gap (Gollwitzer, 1999; Sniehotta et al., 2005). Planning has been identified as an effective strategy in mitigating this gap (Gollwitzer, 1999). However, whereas the literature tends to focus on planning as an intrapersonal process, the significance of interpersonal processes to individuals’ goal pursuit has recently been acknowledged (e.g., Fitzsimons & Finkel, 2010; Riccio et al., 2019). The current study was grounded in the TGD model (Fitzsimons et al., 2015), which argues that in close relationships, especially intimate ones, there are often close ties between partners’ goals, resources, demands, and goal-related outcomes, resulting in an interdependent goal-regulating system. Therefore, for partners to experience transactive gain; that is, achieving better goal outcomes as a dyad, they need to coordinate the use of their shared resources.
effectively. Premised on the idea that the inclusion of one’s partner in the planning process can constitute one way in which partners effectively use their pooled resources to facilitate goal attainment, the current study found that daily DP is associated with better goal-related outcomes.

The role of DP in goal pursuit has begun to attract attention (Burkert et al., 2011). However, the literature, which has focused on the effect of DP at the between-subject level, has yielded mixed results. We argued that to better understand the effect of DP and its interplay with IP, a more fine-grained examination of these processes would be beneficial, particularly as they unfold naturally in romantic partners’ daily lives. To this end, we conducted what we believe to be the first two daily diary studies in the literature examining romantic partners’ IP and DP and goal progress. This higher temporal resolution helped us shed light on when and how partners choose to implement this strategy, as well as to clarify circumstances in which DP promotes goal pursuit. Specifically, the daily diary data allowed us to examine how often people apply DP, the reciprocal nature of DP and IP, and whether DP was associated with better goal-related outcomes in the context of high goal interdependence and satisfaction.

The results of both studies indicated that IP and DP indeed fluctuate on a daily basis in romantic couples. They further support the notion that romantic partners use DP mainly as a complementary strategy to IP. This may suggest that individuals implement DP when IP is insufficient to promote their goal progress. This pattern echoes Bodenmann’s (2005) transactional model of dyadic coping, which depicts a coping cascade process; that is, dyadic coping attempts only come into play when people judge that their individual-based coping strategies will not suffice to address the situation at hand. However, this does not imply that relational processes are not pivotal in people’s daily lives. In fact, the participants opted to combine and use dyadic and IP (~30% of days) as often as they chose to implement IP as their sole strategy (~25% of days). These results demonstrate what is highlighted by the TGD model, that relationship partners do not simply occasionally affect one another’s goal pursuits, but rather, are central to this process.

Note, however, that the time scale in which people transition from relying on individual-based regulation strategies (e.g., IP) to incorporate more dyadic-based regulation strategies (e.g., DP) remains unclear. For example, people may start off with IP but then immediately recognize that they will need their partners’ assistance, and hence move swiftly to DP. In other circumstances, it may take time for people to realize that their individual-based regulatory efforts are not sufficiently effective in facilitating their desired goal-related behaviors. Then, they may switch to involving their partners in the planning process. Future studies integrating lab observations, daily diaries, and longitudinal methods may help capture planning processes at various time resolutions to provide a more fine-grained picture of how and when people transition from individual-based to dyadic-based behavioral regulation.

The results further showed that DP was positively associated with action control and goal progress at the within-person, but not at the between-person level. Specifically, on days in which participants applied DP more than they usually did, they reported higher action control and goal progress. In contrast, participants with higher average levels of DP across the diary period did not report higher levels of action control or goal progress. These findings may help account for the mixed results in previous studies, which only collected a few assessments (e.g., Knoll et al., 2017). Previous studies may have blurred the distinction between the within- and between-person effects of DP and thus failed to provide a pinpointed account of DP effects. Interestingly, IP was tied to better goal outcomes (i.e., action control and goal progress), both at the within-day level and the between-average level. One interpretation of these findings is that it is better for individuals to focus their regulatory efforts on individual-based strategies at the more global level. Habitually relying on dyadic-based strategies may not be as beneficial, and even, at times, can be counterproductive and lead to social loafing and effort outsourcing (e.g., Riccio et al., 2019). In other words, DP may have a context-dependent effect; that is, it is effective in some situations, but not as a more general chronic strategy.

Consistent with our prediction, the results of Study 2 showed that the effect of DP was stronger on days in which participants reported higher levels of goal-specific interdependence; that is, when their goal progress was dependent on their partner’s actions. Relatedly, in both studies, we found that IP was less effective when daily goal interdependence was high. This pattern of results is coherent with TGD theory (Fitzsimons et al., 2015), which argues that when partners’ goal system is characterized by high density—when partners’ goals, pursuits, and outcomes are tightly linked—coordination becomes paramount for goal progress. Our findings suggest that one effective way for partners to coordinate their goals is to combine IP and DP.

Based on previous studies showing that relationship satisfaction plays a role in moderating the effects of couples’ planning (Keller et al., 2017), we were also interested in testing whether within-person increases in participants’ relationship satisfaction could bolster DP effects. The TGD model contents that satisfied partners are likely to adopt a systemic orientation by contextualizing their goal pursuits within a broader, shared, and dyadic regulating system. Therefore, satisfied couples are more motivated to accommodate their behaviors to benefit each other’s goal pursuits. We thus hypothesized that on days in which people were satisfied, involving their partners in the planning process would be particularly beneficial for their goal progress. Contrary to our prediction, however, in both studies, daily fluctuations in subjects’ relationship satisfaction did not moderate the association between DP and goal-related outcomes.
It is essential to note that the TGD model argues that for relationship satisfaction (or more broadly, relationship orientation) to exert a positive effect on goal pursuit, it should be coupled with specific relational skills. Specifically, for dyadic transactive gains to manifest, the motivation to coordinate shared resources needs to be accompanied by perspective-taking and responsiveness skills. In retrospect, we suggest that daily relationship satisfaction is likely to strengthen DP effects when it is paired with partners’ responsiveness. Responsiveness; that is, understanding, validation, and care, on the part of one’s partner is strongly associated with various favorable relational and personal outcomes (Laurenceau et al., 2005; Selcuk et al., 2016). Although the role of responsiveness has yet to be examined in the context of DP, we suggest that it is likely to boost its beneficial effects. For example, when romantic couples understand each other’s goals and needs, validate them, and show care toward their partner, they may be more effective in helping their partner plan successfully. In our view, instead of testing whether DP is effective in and of itself, future studies should go one step further and test in which relational climate (e.g., provision of responsiveness) IP and DP become more effective (for similar ideas, see Martire et al., 2010).

Taken together, the results of both studies begin to tell a story portraying how the regulatory strategy of planning unfolds in romantic partners’ daily lives and its potential effects in promoting goal progress. Specifically, the results suggest that DP is implemented very frequently in partners’ lives, chiefly as a complementary strategy for IP. Unlike IP, DP advances goal progress when used on specific days instead of as a more habitual strategy. Furthermore, although it was not part of our a priori hypotheses, the finding that IP was less effective on days characterized by high goal interdependence was replicated across the two studies. This finding corroborates the ideas put forward by the TDG theory; that is, as the interdependence increase, self-regulation strategies are potentially less effective. It is also in line with the results found in Study 2, that DP is more effective on days characterized by high goal interdependence. Even the null finding regarding relationship satisfaction as a moderator of DP may be telling. Although caution should be exercised in interpreting these results, they may suggest that relationship orientation is kind of “necessary but not sufficient” condition—that is, it can motivate partners to assist each other. However, without the required responsiveness skills, such efforts can be ineffective and even counterproductive (see Zee & Bolger, 2019).

Mechanisms of Dyadic Planning

To the best of our knowledge, the current study is the first to document the favorable effects of daily DP on partners’ goal pursuit. However, the mechanisms underlying the associations between DP and action control or goal progress remain unclear. Here we suggest several possible mechanisms, which may serve as targets for future studies. First, it is possible that explicitly discussing plans with another person may help people articulate their plans and better attend to and consider possible obstacles. This may be especially true when the other person is one’s partner who is often well acquainted with one’s situational constraints. In particular, the process of contrasting the target goal and its possible obstacles helps people construct more realistic plans, thus often enhancing the salubrious effect of planning (Adriaanse et al., 2010). Social modeling is another possible mechanism for the effect of DP (Riccio et al., 2019). When the partner has more experience and expertise than the planner as to appropriate goal-related behaviors (e.g., doing physical activity to lose weight; Gorin et al., 2008), the process of DP may inform people of realistic ways to overcome potential barriers.

The TGD model states that partners coordinate their shared resources more effectively when they hold shared goal representations (Fitzsimons et al., 2015). When partners have compatible views concerning what goals they should attend and the appropriate means for doing so, they are better positioned to promote each other’s goal progress and avoid goal conflict. It is possible that planning together provides partners with opportunities to clarify existing discrepancies and construct shared representations of goal targets, their relative value, and appropriate means to pursue them (Rossignac-Milon & Higgins, 2018). Notably, shared representation is conceptualized to foster other beneficial relational goal-promoting mechanisms, one of which is interpersonal multifinality; that is, actions that simultaneously advance both partners’ goals. DP may help partners to find means that serve more than one partner’s goals. For example, if Jonathan discusses opportunities with Lisa to do more physical activity and Lisa needs more time to prepare for her upcoming exam, they may decide that one way to advance both of their goals is if Jonathan takes responsibility for their dog’s morning walks over the next few weeks. Planning dyadically may also bolster the partner’s motivation to support goal pursuit (Burkert et al., 2011). Indeed, perceived support from close others was found to help overcome barriers during the pursuit by rendering the planning process more efficient (McLean et al., 2003; though see Fitzsimons & Finkel, 2011).

Limitations and Future Directions

One key benefit of the daily diary method is its high ecological validity; namely, its ability to capture the partners’ lives in their natural context (Bolger et al., 2003). However, this method relies on self-report data that are susceptible to several biases (e.g., recall bias), thus limiting the results’ internal validity. One method that has yet to be utilized in the study of DP is laboratory observation. Future studies could examine, for example, the extent to which couples tend to use IP and DP and their combination spontaneously, whether
responsiveness is essential to successful DP, and how these are associated with goal progress over time (Girme et al., 2013).

Another benefit of the daily diary method is that this method allowed us to assess the effect of planning at a much higher temporal resolution than previous studies, which have tested the effects of planning longitudinally over an extended time period. However, to have a more comprehensive picture of the effects of DP, future studies could collect data at multiple temporal resolutions, which would make it possible to test, for instance, whether individuals who tend to engage in IP and DP on a daily basis (e.g., plan their daily physical activities individually and together with their partner) are more likely to achieve their ultimate goals (e.g., losing weight).

Another limitation of the current studies pertains to the daily measurement of planning. To reduce the burden on participants, we used only a brief two-item measure to assess daily IP and DP. Importantly, whereas the DP item unequivocally referred to plans made with one’s partner, IP was worded with less specificity (i.e., “To what extent did you make a detailed plan today regarding when, where, and how you would pursue your goal?”). Thus, some participants might have interpreted this item as including plans made with other people (e.g., their partners). In other words, it is possible that participants could have failed to report DP as a sole strategy, at least in part due to the way we measured IP. In all analyses, IP and DP effects were modeled simultaneously, somewhat helping to partial out the shared variance between these two constructs, and thus allaying this measurement concern. However, future studies would benefit from including items that more explicitly refer to IP, DP, as well as other interpersonal contexts (e.g., coworkers, friends).

Summary

Drawing on TGD (Fitzsimons & Finkel, 2015) and other-related models (Ricci et al., 2019) highlighting the paramount role of close relationships in people’s goal pursuit, the current studies examined the effect of incorporating one’s partner in the planning process. In line with previous findings (e.g., Burkert et al., 2011), the results suggest that considering partner involvement in goal-related processes can shed light on how people succeed or fail in bridging the gap between their intentions and goal-promoting behaviors. Specifically, both studies showed that DP is a relational regulation strategy implemented frequently in couples’ daily lives; that is positively linked with daily goal pursuits.

The results should be replicated before any concrete recommendations are drawn. Nonetheless, we believe that our findings are at least suggestive of the idea that incorporating DP in interventions targeting behavioral change (e.g., losing weight, increasing physical activity) can be one promising avenue for bolstering intervention effects. Importantly, the results indicate that unlike previous interventions that encouraged the implementation of DP at the more global level (e.g., randomizing partners into individual vs. DP conditions; Burkert et al., 2011), a more fine-grained approach should be exercised in implementing this strategy. For example, involving the partner in the planning process does not seem to be viewed as an alternative to IP, but rather as a strategy to complement individual-based regulatory efforts on specific days. Furthermore, DP might be particularly useful when people’s goal-related actions are dependent upon their partners.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by the Israel Science Foundation (Grant 690/19) awarded to the last author.

ORCID iD

Eran Bar-Kalifa https://orcid.org/0000-0003-3579-3015

Supplemental Material

Supplemental material is available online with this article.

Note

1. The effects of IP and DP were compared using the estimate statement in SAS PROC MIXED. This procedure computes the difference between the estimated parameters and then utilizes the parameters’ asymptotic covariance matrix to compute the stand-error (and significance) of this difference.

References

